
Advanced Robotics 22 (2008) 1397–1420
www.brill.nl/ar

Full paper

Mobile Robot Control Architecture for Reflexive Avoidance
of Moving Obstacles

Keum-Shik Hong a,∗, Tua Agustinus Tamba a and Jae-Bok Song b

a School of Mechanical Engineering, Pusan National University; 30 Jangjeon-dong, Gumjeong-gu,
Busan 609-735, South Korea

b Department of Mechanical Engineering, Korea University, Anam-dong, Seongbuk-gu,
Seoul 136-713, South Korea

Received 25 May 2007; revised 15 February 2008; accepted 7 April 2008

Abstract
In this paper, a three-layer (deliberative, sequencing, reflexive) architecture is adopted and the structure of
the reflexive layer is discussed. The objective of this architecture is to extract the basic actions that require
hard-real-time execution from non-real-time-allowed behaviors by separating them into the reflexive and
sequencing layers, respectively. The reflexive layer consists of resources, actions, an action coordinator
and a motion controller. To guarantee the hard-real-time execution, a set of simple actions and an action
coordinator are designed using the functions provided in the RTAI (Real-Time Application Interface for
Linux) environment. Also, an obstacle avoidance algorithm based upon data from a laser range scanner
is developed. For the purpose of avoiding a moving obstacle, which is treated as a moving circle through
segmentation and circularization processes, a Kalman filter is developed to estimate the distance and the
heading of the center of the moving circle. The effectiveness and real-time characteristics of the proposed
reflexive layer and the developed algorithms are examined through experiments using scattered stand-still
obstacles as well as a moving human.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2008

Keywords
Behavior based, control architecture, mobile robot, obstacle avoidance, real time control

1. Introduction

The necessity for productivity improvement has motivated the development of var-
ious industrial robots, whereas the desire of human beings for convenience and
happiness has motivated the development of human-friendly robots. It can be said
that the coexistence of humans and robots in a ubiquitous environment is not far

* To whom correspondence should be addressed. E-mail: kshong@pusan.ac.kr

© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2008 DOI:10.1163/156855308X360488



1398 K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420

away. As human expectations for robots grow, the hardware of robots becomes more
complicated. Most of all, the system integration of various software components as
well as diverse hardware also becomes more important, because software for navi-
gation, manipulation, voice recognition, vision, obstacle avoidance and other tasks
has to be integrated in one platform. For this purpose, a comprehensive architec-
ture that assures an easy integration of various kinds of hardware and software is
required. After an operating system (OS) is selected (which may depend on hard-
ware requirements), a software framework should be designed according to the
OS’s characteristics. Such a framework that defines protocols, standards, expan-
sions and requirements is called the control architecture. As will be discussed, it is
difficult for the existing control architectures to fulfill the demanding performance
requirements that have arisen lately and it is, therefore, necessary to introduce a
new concept of control architecture to satisfy the various functions required.

In the early 1980s, the sense–plan–act structure of batch processing was the pre-
vailing structure in machines and robots. In the batch processing method, the major
concerns were how to design the planning part and how to model the environment
surrounding the robot. The shortcomings of such a method are that a great deal
of knowledge about the working environment is necessary in advance to design
a stable planning part, and that it is difficult to cope effectively with uncertain and
unpredictable actual environments [1, 2].

The control architectures in the 1980s were characterized by a layered architec-
ture represented by Brooks’ subsumption architecture [3, 4] and a behavior-based
architecture represented by Arkin’s motor schema [1, 2]. As a complicated task
is arranged to be executed in the order of a prescribed plan, a layered control
architecture has been widely applied in the automation of industrial robots. The
subsumption architecture modeled after the reactive animal behaviors classifies the
components of a robot system by ability, unlike the existing control methods that
classify the components by function. The shortcomings of the subsumption archi-
tecture were that it failed to put forward mechanisms that could efficiently deal with
a growing number of layers. In addition, it was difficult for the architecture to carry
out highly sophisticated works because it failed to express the surrounding environ-
ment systematically and to diagnose and correct errors [4]. Arkin’s behavior-based
control architecture can be represented as a combination of behaviors that perceives
specific sensor information as stimuli and react to them. This control architecture
has been built to generate the movements of a robot.

Not only to complement the above shortcomings, but also to meet the varied per-
formance requirements of complex hardware, studies have been conducted from the
early 1990s on a hybrid control architecture that is characterized by (i) a layered
structure, (ii) behavior-based controls and (iii) a scheme of combining competi-
tive and cooperative coordinators [5–11]. A competitive coordinator drives a robot
by selecting the most appropriate behavior from a number of candidate behaviors,
whereas a cooperative coordinator drives a robot by combining necessary behaviors
into a new one.



K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420 1399

Examples of adopting a hybrid control architecture include 4D/RCS, developed
by NIST, which was applied to unmanned military vehicles [8], and CLARAty,
jointly developed by NASA, Caltech and Carnegie Mellon University that was ap-
plied to a Mars exploration robot [10]. These control architectures were intended
to be used outdoors and, therefore, their design focused on securing stability, re-
sulting in complicated structures and heavy dependence on a database. While the
architectures of 4D/RCS and CLARAty were focused on navigation, the control
architecture adopted for Care-O-bot [7], a robot developed by Frauhhofer IPA in
Germany for the elderly and handicapped people, was intended for simultaneous
manipulation of robot arms as well as navigation of a mobile platform. The typical
three-layer architecture BERRA, developed by the Royal Technology Academy of
Sweden for a museum guide robot, has been widely adopted and it influences the
majority of traveling robots currently under development [6]. However, the roles
of each layer in BERRA are ambiguous and they fail to fully realize the charac-
teristics of behavior-based control. In addition, the control architecture developed
for O2CA2, an undersea exploration robot, has emphasized the importance of a
reactive layer in their object-oriented control architecture [12]. However, most of
these architectures have the shortcoming that all situations should be constructed
in a database, or predicted, in order for the robot to move autonomously under the
control architecture [13, 14].

However, such conventional architectures, whose main focus lies in the realiza-
tion of algorithms using various sensors, fail to characterize the imperativeness of
matters and their inability to establish priorities causes them to perform poorly in
real-time operations. Even though many previous works tried to construct software
components using an object-oriented approach, the relationship and data flow be-
tween layers and components were not distinctive. In particular, actions that require
real-time execution during navigation, manipulation or even during human–robot
interaction were not identified at all. Also, the functions in the lowest layer were
not designed to perform reflexive actions in addition to carrying out the orders from
the upper layer. Most of all, as robot behaviors evolve, the separation (making in-
dependent) of the growing diversity of new behaviors from the basic motions of the
robot is the objective of the proposed architecture.

In this paper, the roles of a reflexive (lowest) layer under the umbrella of a three-
layer control architecture are characterized. The use of four components in the
reflexive layer and their real-time implementation in the Linux RTAI (Real-Time
Application Interface) kernel are proposed. As basic software components for the
robot’s movement, four actions are designed. For avoiding scattered motionless ob-
stacles as well as moving ones, detection and avoidance algorithms are developed
too. Since a two-dimensional (2-D) laser scanner is used as a sensor for detection,
the moving obstacle is assumed to be a circle, featured by its center and radius, af-
ter segmentation and circularization processes. Then, a Kalman filter for estimating
the distance and orientation to the center of the moving circle together with their
time-rate of change is designed. To test the effectiveness of the proposed reflexive



1400 K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420

layer and designed components, the first version of the SILBO robot developed by
KIST is used in experiments.

The novelty of this paper is the proposition of an architecture that separate the
basic actions (Move, Goto, Avoid, E-stop, etc.) from the more complicated behav-
iors. As the navigation module in the sequencing layer can be improved, modified
or replaced regardless of the change or variations of sensor update rate in the re-
flexive layer, the overall structure and individual algorithms in the deliberative and
sequencing layers are independent of the sensor update rate and other uncertain-
ties. The performance of the actions in the reflexive layer is hardware dependent in
the RTAI environment, whereas the performance of the behaviors in the sequenc-
ing layer is not only hardware dependent but also software dependent in the Linux
environment.

2. Robot Configuration and Architecture

2.1. Hardware Configuration

The autonomous robot is a robot that is capable of self-judgment and independent
navigation in an unknown environment [15]. Figure 1 shows the first version of
SILBO used for experiments in this study, which was developed by the 21st Century
Frontier R&D Program, KIST, South Korea, in 2004. The robot has two driving
wheels (left and right) and two auxiliary wheels (front and rear). Each driving wheel
is equipped with a DC motor powered by two 12-V batteries, a 30:1 reduction gear
and an encoder. The maximum speed of the robot is 0.5 m/s. Figure 2 depicts the
overall hardware configuration of the robot, which includes a Pentium IV 2.2-GHz
single-board computer with a PCI digital/analog interface card (Commell), a serial
multi-8 cable (Kicom) and a DAQ board (NI).

Figure 1. Mobile platform of SILBO developed by the 21st Century Frontier R&D Program, KIST,
South Korea, in 2004.



K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420 1401

Figure 2. Hardware configuration of the mobile platform of SILBO in Fig. 1.

The sensors that are used are the following. One LM200-30106 (SICK) 2-D laser
range finder (LRF) sensor is attached on the front side. The scanning ranges and res-
olutions are 180◦ (max)/100◦ (min) and 0.25/0.5/1◦, respectively, and it can mea-
sure up to 30 m away with an accuracy of ±15 mm. Two PBS-03JN (HOKUYO)
infrared ranger (IR) sensors (front and rear) are attached. The scanning range, res-
olution and distance are 180◦, 1.8◦ and 3 m (max)/2 m (min), respectively. Twelve
PS40S ultrasonic sensors (Nicera) are installed around the robot at intervals of 30◦.
With a PCI interface card, the distance between the robot and a wall or obstacle is
detected by measuring the time interval from the transmission of ultrasonic waves
to their returns at each sampling time. For dead-reckoning, an incremental-type en-
coder is built into each of the two DC motors. Using the encoder counter in the PCI
interface card, the moving direction and velocity of the robot are updated. A 3Com
wired and wireless IP router is used for linking out-world systems including the
host computer. Using this router, control commands can be delivered to the robot
or the internal status of the robot can be monitored. Also, remote modification and
execution of control programs are possible.

2.2. Software Structure

It is important to construct software architecture in such a way that a part of the
software can be replaced or extended. It is also required to have object-oriented
characteristics for exchanging data among functions [16–18]. The tasks to be ac-
complished may have different cycle times, priorities and execution times, and some
tasks may require real-time execution in relation to getting data from the sensors and
driving the motors. Recently, the coordination of proper actions or behaviors among
available candidates by assigning priority in real-time has drawn attention among
researchers. Also, since not all programs can be executed in real-time, designing
a software architecture that can distinguish the imperativeness of the events in an



1402 K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420

unknown environment becomes critical. Accordingly, real-time tasks like motor
control, sensing and obstacle avoidance become more important for the improve-
ment of autonomy in robotics [19–21]. In this respect, this study uses RedHat Linux
v9.0 patched with RTAI v3.1 for Linux [22, 23].

The RTAI was initiated from the Dipartimento di Ingegneria Aeros-paziale del
Politecnico di Milano to provide real-time functions to Linux in 1996. The advan-
tage of RTAI lies in the fact that it provides real-time patches for a new kernel
version more quickly than RT-Linux. Most of all, it is open to the public. In addi-
tion, it is possible to develop software that enables high-speed real-time task actions
because the RTAI offers a real-time application program development function in
the user domain. In addition, with the RTAI, multitasking is possible; all Linux ap-
plication programs and functions can be used; and standard Linux drivers can be
used as they are. The RTAI has two unique features: a real-time scheduler and an
interrupt handler. For the inter-process communications offered by RTAI, the RT-
FIFO offers real-time message communication handling functions between the user
and kernel levels. The multiple-models approach assumes that a model can imme-
diately capture the complex system behavior better than others.

2.3. Architecture Specification

Table 1 compares the specifications of the adopted architecture in this paper with
others available in the literature: Saphira 6.2 [24], Teambots 2.0 [25] and ISR
BERRA [6]. The main differences are: the real-time OS, RTAI 3.1, is adopted;
the programming language in the kernel is C, but that in the user level is C++; a
variety of sensors can be easily attached; various types of action coordinator can be
applied; the sensor actuator latency in the kernel is 0.02 s, whereas that at the user
level is 0.2 s.

3. Reflexive Layer

The control concept can be divided into two categories, i.e., deliberate control and
reflexive control, depending on how the changes in the surrounding environment
are incorporated in determining the behavior of the robot. As a process of ‘recogni-
tion and decision’, the deliberate control generates a series of tasks (plans) by using
the knowledge and information obtained, and it enforces the consecutive fulfillment
of the scheduled tasks. Hence, the deliberate control is effective in determining the
tasks in the upper level, in that complex tasks can be optimized in some sense before
their execution. The reflexive control, however, readily responds to the surrounding
environment rather than thinking and getting the most optimal answer. In this re-
spect, reflexive control is effective in determining the behaviors in the lower level.

Figure 3 shows the control architecture adopted in this paper, which has three
layers. Briefly explaining individual layers, the deliberative layer plays the role
of converting the robot’s perception of a human into computer language and vice
versa, so that the human’s orders can be carried out by the robot. It also performs



K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420 1403

Table 1.
Comparison of four architecturesa

Saphira 6.2 TeamBots 2.0 BERRA 2.0 SILBO v0.74

OS
Linux yes yes yes yes (Redhat 9.0)
MS Windows yes yes no no

Real-time OS no no no yes (RTAI 3.1)
Layers single two three three
Main language C Java C++ C/C++
Software tools requirement gcc Motif Java 1.2 gcc 2.95 gcc 3.2
Graphics

GUI yes yes yes yes
graphics program yes (limited) yes no yes

HRI
text yes yes yes yes
speech no no yes yes
GUI yes no yes yes
palm no no yes yes

Multi-agent support no yes no yes
Multi-host no no yes yes
Multi-process threads thread multi-process multi-process/thread
Data flow paradigm

push yes no yes yes
pull yes yes yes yes

Platform portability
hardware abstraction good very good very good very good
sensor extension capability no good very good very good

Sensor support
sonar yes yes yes yes
LRF yes no yes yes
IR no no yes yes
camera yes yes yes yes
bumper yes yes yes yes
microphone no no no yes
gyro no no no yes
touch-screen no no no yes

Behavior coordinator fuzzy logic various vector/histogram action coordinator
Timing aspects

real-time support no no no yes
sensor actuator latency 0.6 s 0.4 s 0.17 s 0.02/0.2 s

Bandwidth
sensor to behavior 4 kB/s OS limitation OS limitation OS limitation

Code size
complete system 11 MB 45 MB 36 MB 5.82 MB

a The specifications of Saphira 6.2, TeamBots 2.0 and BERRA 2.0 are adopted from Oreback and
Christensen [11].



1404 K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420

Figure 3. Adopted three-layer control architecture, SILBO v0.74.

the role of planning and dividing the arranged tasks into two categories: navigation
and manipulation. The deliberative layer consists of a human–robot interface (HRI)
and a planner.

The sequencing layer generates consecutive orders to perform the tasks gener-
ated in the deliberative layer by processing the acquired information from sensors.
This layer consists of three modules: a navigation module, a manipulation module
and a process supervisor module. The navigation module uses sensor data informa-
tion, and runs various algorithms for self-position recognition, environmental map
building, path generation and via-point calculation. The navigation module consists
of three submodules: a map, a localizer and a path planner (Fig. 4). For map cre-
ation, the occupancy grid map method is used; for localization, the Monte Carlo
algorithm is adopted; and for path planning, the A∗ search algorithm is employed
[12, 26–28]. However, both deliberative and sequencing layers are not discussed
due to space limitations.

The reflexive layer, which is the main focus of this paper, carries out reflexive
actions as well as the orders from the upper layer, i.e., the orders from the process
supervisor. This layer consists of resources, actions, an action-coordinator, motion
controllers and the real-time action supervisor (RTAS). To guarantee the safety of
humans and the robot, this layer repeatedly performs simple computations peri-
odically or non-periodically to control the movements of the robot, and pursues
obstacle avoidance in real-time in a varying environment. It sometimes combines a
number of actions to generate smoother movements of the robot. As seen in Fig. 4,
the programs/codes belonging to the deliberative and sequencing layers are run in
Linux, but those belonging to the reflexive layer are run in the RTAI kernel.

3.1. Resource

A resource represents a shared memory in which the data acquired from a sensor is
stored. Each resource has its own corresponding sensor, and the stored information



K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420 1405

Figure 4. Structure of the reflexive layer.

is supplied to various actions in the reflexive layer and to the components in the
upper-level sequencing and deliberative layers, if necessary. Resources can be clas-
sified into two types: a polling type and an interrupt type. To generate periodic data,
the polling type uses a periodic thread provided in the RTAI. Using the functions
provided in real-time device drivers, resources keep the data acquired from sensors
in the shared memory. The polling type resources include the data from sonar, LRF,
IR, encoder, gyro and the state of charge in the battery.

On the other hand, the interrupt type returns sensor data in response to inter-
rupt signals from the motion board. When an outside interrupt is generated, the
corresponding resource reads the sensor data from the real-time device driver and
transmits the data to the shared memory. The RT-driver reads the data through the
interrupt and offers a callback function as a way to inform the RT-thread of the data.
Bumper signals are the interrupt type.

3.2. Action

An action is the smallest independent software component that realizes a specific
function. Four actions (Goto, Move, Avoid, E-stop) are developed. Individual ac-
tions calculate the desired linear and angular velocities of the robot, based upon the
current and target configurations of the robot and by using the available resources.
Some action may fuse several pieces of information from various resources (ex-



1406 K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420

periments with the use of the LRF resource are performed in this paper). A series
of actions should be designed in order for the robot to demonstrate a stable and
smooth maneuver in a complex environment. The codes of the actions should be
simple in order to minimize the computation time in the kernel of RTAI. Briefly
outlining their roles, the Goto makes the robot advance to the next via-point in
the robot’s path in compliance with the command from the navigation module, the
Avoid makes the robot react against something near to it, the Move lets the robot go
at a constant linear/angular velocity and the E-stop makes the robot stop immedi-
ately.

3.2.1. Goto
Goto is an action that moves the robot from the current position to a destination
position by receiving via-points in the route assigned from the process supervisor.
The execution cycle of a Goto (20 ms) is faster than the update cycle in the sequenc-
ing layer (200 ms). Therefore, it updates the current position information using the
encoder until it receives the correct position information from the localizer. Upon
calculating the current position, the linear and angular velocities are calculated and
delivered to the action coordinator in a consecutive manner. In this sense, the Goto
performs as a local localizer, because it updates the current position every 20 ms un-
til a correct global coordinate is reassigned from the sequencing layer. The robot’s
linear and angular velocities, v and ω, are generated as [29]:

v = (k1 cos δ)ρ, k1 > 0 (1)

ω = k4δ + k3
cos δ sin δ

δ
(δ + k2θd), (2)

where ρ is the distance from the current position to the target position, δ is the
angle between the robot principal axis and the distance vector ρ, θd is the desired
orientation of the robot, and ki > 0, i = 1, . . . ,4, are the control gains.

3.2.2. Avoid
If the detected obstacle is motionless or if its moving region is far away from the
current position, then it can be circumvented by planning a new path. Hence, the
Avoid action considered in the reflexive layer should be a reflexive action. Prior
to avoiding obstacles, it is necessary to identify the dynamic characteristics of the
obstacles. To avoid stand-still obstacles, it is necessary to consider only the distance
to the obstacle, but to avoid a moving obstacle, it is necessary to take into account
the relative movement between the robot and obstacle. The designed Avoid action
in this paper generates the linear and angular velocities of the robot as functions
of the heading of the robot, as well as the distance to and the size of the detected
obstacle. Detailed algorithms will be discussed in Sections 4 and 5.

3.2.3. Move
The Move is introduced to control the velocity of the robot, not to control its
positions. In Goto or Avoid, the robot’s velocity is not constant throughout the
movement in general. However, in the cases of object tracking or wall following,



K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420 1407

it might be necessary for the robot to move at some constant speeds. In this case,
controlling its velocity is easier than controlling its position. The Move delivers the
velocity command from the RTAS to the action coordinator directly.

3.2.4. E-Stop
The E-stop means an emergency stop of the robot using mechanical brakes. Two
kinds of E-stop can be considered: a hard E-stop and a soft E-stop. The hard E-
stop is activated when a bumper of the robot collides with an object, whereas a soft
E-stop is activated when the distance between the robot and an obstacle becomes
smaller than a certain value. When an E-stop is activated, the robot generates an
event that requests the navigation module in the upper sequencing layer to provide
a new route to reach the target point.

3.3. Action Coordinator

The action coordinator fuses (mixes) the outputs from activated actions in an effec-
tive manner and delivers the fused outcome to the motion controller so that a variety
of maneuvers can be achieved. The action coordinator should be able to carry out
non-cyclical, as well as cyclical actions. This is because most actions are cyclical,
but in some cases non-cyclical actions can also become involved in the input. Two
roles of the action coordinator are (i) to deliver the output from an action to the mo-
tion controller either as it is or in the form of a weighted value after fusing several
outputs, and (ii) to monitor the events occurring in the reflexive layer and report
them to the process manager in the sequencing layer.

The following should be incorporated when designing an action coordinator:

(i) For given information from upper layers and resources, the action coordinator
should be able to determine appropriate actions that are most suitable. For in-
stance, in the case of Goto, the movement of the robot is made in accordance to
via-points that require position control, but in the case of Move, the movement
can be made through velocity control, not through position control.

(ii) The concepts of Arkin’s competitive coordinator and Brooks’ cooperative co-
ordinator should be used properly in order to generate the robot’s movements
that can efficiently cope with all situations with a few simple actions.

In this paper, the simplest coordinating algorithm, i.e., an algorithm that switches
in varying situations, is tested in Section 6. Figure 5 shows the data flow in the
action coordinator.

3.4. Motion Controller

The motion controller is a component that actually delivers the control signals to
the motion board. It receives the velocity commands of both wheels, converts them
into proper signals to the actuator and delivers them to the two motor drivers. The
motion controller also uses the functions provided by RTAI and is realized as a
real-time thread.



1408 K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420

Figure 5. Flow chart in the action coordinator.

3.5. RTAS

The RTAS is a component in the reflexive layer that manages resources and actions.
It offers a variety of communication methods among hardware and components in
the reflexive layer. As a part that connects the user space to the kernel space, the
RTAS also designates the operation modes of actions, and provides the position and
velocity information of the robot to the actions. In addition, it communicates with
other components in Linux and enables smooth integration of software components
and, to this end, two RT-FIFOs are employed. One of two RT-FIFOs is used to
transmit the orders in real-time and the other is used to convey the status in the
reflexive layer (success or failure) to the sequencing layer. In this study, the RT-
FIFOs are realized in the GUI environment and are used to evaluate the traveling
control performance.

4. Obstacle Detection

Before activating an Avoid action, the robot needs to clearly identify the dynamic
status of the obstacle. A stand-still obstacle can be recognized as a part of the envi-
ronment. A moving obstacle can be avoided promptly only when the velocity and
direction of the object are identified precisely. Also, even when the robot detects a
stand-still obstacle, it still tries to avoid it if the obstacle is on the way to its destina-
tion. Accordingly, in this section, a method that identifies a moving obstacle using
a LRF sensor in a cluttered environment is investigated.



K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420 1409

Figure 6. Segmentation scheme.

4.1. LRF Data Preprocessing

Here, the segmentation and circularization procedures for obtaining the center and
the radius of a circle, which are regarded as the moving obstacle, are first discussed.
Second, using the obtained center and radius information, a Kalman filter for esti-
mating the distance and orientation to the obstacle from the LRF sensor (together
with their time rate of change) is developed.

4.1.1. Segmentation
The information about the environment that surrounds the robot is captured with
only a finite number of segmented data points. For instance, the LMS 200 LRF
sensor that scans the forward 180◦ with interval of 0.5◦ in 20 ms generates 361
data points. Therefore, it is necessary to tell whether two neighboring points in the
scanned data originated from the same object or not.

Consider the segmentation scheme depicted in Fig. 6. Let LRFk represent the
LRF data at time k as follows:

LRFk = {pk,i = (dk,i, αk,i) : αk,i = i × �α, i = 0,1,2, . . . ,360,�α = 0.5◦},
(3)

where LRFk represents data points in the polar coordinate, the subscript i represents
the ith point, �α is the scanning resolution and dk,i is the distance from the LRF
origin to point pk,i at an angle αk,i from the horizontal axis at time k. If no obstacle
is detected, then a set-value, dmax, is assigned (in this paper, dmax = 1000 mm).

For two given neighboring points at time k, i.e., pk,i−1 = (dk,i−1, αk,i−1) and
pk,i = (dk,i, αk,i), it is necessary to tell whether or not the two points come from
one object. Let d(pk,i−1,pk,i) be the distance between the two points. Let dseg be
the segmentation index defined as:

dseg = C1 + C0 = min{dk,i−1, dk,i} × �α + C0, (4)



1410 K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420

(a) (b)

Figure 7. Detected obstacle assumed as a circle (center and radius). (a) Selection of three points from
a set of data reflected from an object. (b) Circularization of the obstacle using three selected points.

where C1 = min{dk,i−1, dk,i}×�α and C0 is the segmentation threshold, which is a
design parameter (C0 = 20 mm in this work). If d(pk,i−1,pk,i) ≤ dseg, then we con-
clude that pk,i−1 and pk,i belong to the same object. However, if d(pk,i−1,pk,i) >

dseg, then we conclude that pk,i−1 and pk,i do not belong to the same object, which
implies that there exists an open space between two points and therefore the robot
can search for a possible passage to go through. If C0 is too large, the segmentation
becomes too conservative and the robot might think that there is no passage, even
though there actually exists sufficient space for the robot to go through.

4.1.2. Circularization Using Three Selected Points
Once the segmentation process is over, we can extract a group of data originating
from the same object. Figure 7a shows such a data set. From the set, three points
(i.e., the right and left extreme points, and the nearest point to the robot) are ex-
tracted, which are used for the circularization purpose in obtaining the center and
radius of a circle under the assumption that the obstacle is circular. The circulariza-
tion process is necessary because a material point Pk,near measured at time k does
not, in general, correspond to the same material point Pk−1,near measured at time
k − 1. Therefore, a fictitious geometrical center of the obstacle, rather than a real
material point, is considered for estimating the moving speed and direction of the
obstacle.

Figure 7b shows the situation in which an obstacle is detected in the left-hand
side of the robot’s movement. Let pk,ini,pk,end and pk,near be the two extreme
points and the nearest point, respectively. Then, the x- and y-coordinates of the
three points in the LRF sensor coordinate are:

pk,ini = (xk,ini, yk,ini) = (dk,ini × cosαk,ini, dk,ini × sinαk,ini) (5)

pk,near = (xk,near, yk,near) = (dk,near × cosαk,near, dk,near × sinαk,near) (6)



K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420 1411

pk,end = (xk,end, yk,end) = (dk,end × cosαk,end, dk,end × sinαk,end), (7)

respectively. Then, two straight lines passing through {pk,ini,pk,near} and {pk,near,

pk,end} are as follows:

y1 = m1(x1 − xk,ini) + yk,ini (8)

y2 = m2(x2 − xk,near) + yk,neari, (9)

where m1 = (yk,near − yk,ini)/(xk,near − xk,ini) and m2 = (yk,end − yk,near)/(xk,end −
xk,near) represent the slopes of individual lines, respectively. Also, the two vertical
bisectors of (8) and (9) are

y′
1 = − 1

m1

(
x′

1 − xk,ini + xk,near

2

)
+ yk,ini + yk,near

2
(10)

y′
2 = − 1

m2

(
x′

2 − xk,near + xk,end

2

)
+ yk,near + yk,end

2
. (11)

Then, the coordinates of the intersection point of (10) and (11) become

xobs
k = m1m2(yk,ini − yk,end) + m2(xk,ini + xk,near) − m1(xk,near + xk,end)

2(m2 − m1)
(12)

yobs
k = y′

1|xobs
k

(or y′
2|xobs

k
). (13)

Hence, the distance and orientation from the origin Os of the LRF sensor to the
center Oobs

k of the obstacle are:

ρobs
k =

√
(xobs

k )2 + (yobs
k )2 (14)

θobs
k = tan−1(yobs

k /xobs
k ). (15)

Furthermore, if using two points, e.g., Oobs
k and pk,near, the diameter of the obstacle

can be estimated as:

Dobs
k = 2 ×

√
(xk,near − xobs

k )2 + (yk,near − yobs
k )2. (16)

4.2. Estimated Distance and Orientation to the Obstacle and Their Rate of
Change

Here, the Kalman filter approach is applied for estimating the distance and orienta-
tion to the moving obstacle from the sensor origin Os. The purposes are (i) to filter
out the noises included in (14) and (15), and (ii) to obtain their time rate of change.

Let z1
k = [ρobs

k ρ̇obs
k ]T and z2

k = [ θobs
k θ̇obs

k ]T. For each vector, the following
discrete white noise acceleration model is introduced:

z
j

k+1 =
[

1 T

0 1

]
z
j
k +

[
T 2/2

T

]
wk = Fz

j
k + Gwk, j = 1,2 (17)

yk = [1 0 ]zj
k + vk = Hz

j
k + vk, (18)



1412 K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420

where T is the sampling time, wk is the process noise, vk is the measurement noise
and the output yk is either ρobs

k or θobs
k . The Kalman filter equations [30] are:

ẑ
j

k+1|k = F ẑ
j
k|k

Pk+1|k = FPk|kF T + Q

ẑ
j
k|k = F ẑ

j

k−1|k−1 + Kk[yk − Hẑ
j

k|k−1] (19)

Pk|k = [I − KkH ]Pk|k−1

Kk = Pk|k−1H
T[HPk|k−1H

T + R]−1,

where ẑ denotes the estimated value, K is the Kalman gain, P is the a posteriori es-
timate error covariance, and Q and R are the covariance of wk and vk , respectively.

5. Collision Avoidance Algorithm

In evaluating the safety and traveling capability of autonomous mobile robots, ob-
stacle avoidance becomes the most basic and important criterion. Some of the
motions of obstacles are predictable and some are not. For the obstacles with
predictable motions, a path-planning approach from the navigation module in the
sequencing layer may be pursued or a completely new path plan from the top de-
liberative layer can be arranged. However, for obstacles that may be encountered
abruptly in an unexpected situation, a swift avoidance in real-time has to be accom-
plished. Here, such abrupt obstacle avoidance in the reflexive layer is developed. As
far as the theory is concerned, there is not much difference between the algorithm
executed in real-time and those that are not. However, in order to achieve the hard
real-time, the algorithm needs to be run in the kernel of Linux RTAI.

5.1. Sensor Coordinate to Robot Coordinate

The command inputs for linear and rotational motions of the robot are given as
values in the robot coordinate affixed to the origin of the robot, OR. Also, as seen
in Fig. 8, the values of ρobs

k , ρ̇obs
k , θobs

k and θ̇obs
k are obtained in the sensor coordi-

nate. Therefore, it is necessary to convert the filtered values in (19) to the values
in the robot coordinate. Then, the distance between the robot and obstacle (i.e., the
gap between two bodies) can be calculated by subtracting the sum of the radius of
the obstacle (Dobs

k /2) and the robot radius r from the distance between two center
points, Oobs

k and OR.
Let Oobs

k+1 in Fig. 8 be the center of the obstacle at time k + 1, whose polar
coordinates are (ρobs

k+1, θ
obs
k+1). Then, the distance between OR and Oobs

k+1 and the
orientation of the obstacle in the robot coordinate become:

ρR
k+1 =

√
(ρobs

k+1)
2 + r2 − 2ρobs

k+1r cos(π/2 + θobs
k+1) (20)

θR
k+1 = cos−1

(
ρobs

k+1

ρR
k+1

cos θobs
k+1

)
, (21)



K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420 1413

Figure 8. Transformation of the distance and orientation of the obstacle into the robot’s coordinate.

Figure 9. Geometry for determining the heading of the robot compared to a moving obstacle.

where the law of cosine was used in obtaining (20).

5.2. Moving Direction

The robot begins to avoid an obstacle if the distance between the robot and the
obstacle, ρR

k+1, becomes smaller than some pre-designed value, dsafe (the safety
distance, dsafe = 800 mm is assumed) . As in Fig. 9, the heading of the robot is
determined by using the geometry between the robot and the obstacle. Let demg be



1414 K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420

the emergency distance that evokes a soft E-stop of the robot (demg = 50 mm). Let
D be the offset distance defined as follows:

D = 2(demg + r), (22)

where r is the radius of the robot. Let pk+1,end and pk+1,near be two points as shown
in Fig. 9. Then, the angle made by two line segments pk+1,nearOR and pk+1,endOR

is obtained as follows:

�θ = sin−1(Dobs
k /2ρR

k+1), (23)

where the obstacle was assumed to be located in the right-hand side from the robot’s
heading (or the angle between pk+1,nearOR and pk+1,iniOR can be calculated if the
obstacle is located in the left-hand side).

Now, using the simple geometry in Fig. 9, two acute angles β and γ are obtained
as:

β =
∣∣∣∣tan−1

(
D

ρR
k+1 − Dobs

k /2

)∣∣∣∣ (24)

γ = β + �θ. (25)

Finally, the heading angle φ from the x-axis of the robot coordinate is proposed as:

φ =

⎧⎪⎨
⎪⎩

θR
k+1 + γ − π

2
, 0 < θR

k+1 <
π

2

θR
k+1 − γ − π

2
,

π

2
< θR

k+1 < π.
(26)

5.3. Linear and Angular Velocities of the Robot

For generating the robot’s motion, a number of efficient algorithms were reported
in the literature [21, 31–34]. In this paper, the method in Ref. [34] is adopted. Let
vmax and ωmax be the robot’s maximum linear and angular velocities, respectively.
Then, the following algorithm is given:

vo = ρR
k+1 − Dobs

k /2

dsafe
×

(
π/2 − |φ|

π/2

)
× vmax (27)

ωo = φ

π/2
× ωmax, (28)

where vo represent the robot’s linear velocity in the current direction and ωo is the
robot’s angular velocity given as a function of distance ρR

k+1, obstacle size Dobs
k ,

safe distance dsafe, compass angle φ,vmax and ωmax. The subscript o represents
‘obstacle avoidance’. As seen in (27) and (28), the robot’s velocity decreases as (i)
the obstacle gets near to the robot and (ii) the heading angle of the robot gets larger.

6. Experiments

The performance evaluation of the proposed control architecture was conducted in
two ways: position control mode and velocity control mode. In the position control



K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420 1415

mode, three actions (Goto, Avoid and E-stop) were tested with stand-still obstacles
and also in the presence of a moving human. Next, in the velocity control mode
(Move), constant velocity rectilinear motions and curvilinear motions with increas-
ing angular speed were evaluated. In this paper, however, due to space limitations,
only Avoid tests are discussed.

The conducted Avoid experiments are to examine whether the transition from
a Goto action to an Avoid action takes place smoothly when the robot comes across
to obstacles on its way to the target position. Figure 10a shows an avoidance of
stand-still obstacles: the large circles indicate the path of the robot marked at 0.4-s
intervals and the small dots are stand-still obstacles. Figure 10b and 10c depicts the
forward and rotational angular velocities of the robot, respectively, in that a Goto
command from (1.5,0) to (2.5,6) was given (hence the velocity changed from 0 to
0.18 m/s) until it meets an obstacle, and then it keeps trying to avoid the obstacles
ahead of it until it finally finds out an open space to the goal. The graphs show

(a) (b)

(c)

Figure 10. Experimental results of the avoidance of scattered stand-still obstacles: initial position
(1.5,0); goal position (2.5,6); locations of six obstacles at (0.3,4.5), (0.8,4.7), (1.5,5.3), (1.5,2.5),
(2,2) and (2.5,1.3). (a) Trajectory among scattered but stand-still obstacles (large circles: robot path,
small dots: obstacles). (b) Forward linear velocity. (c) Rotational angular velocity.



1416 K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420

(a) (b)

(c)

Figure 11. Experimental results: avoiding a moving human. (a) Trajectories of the robot (large cir-
cles: the robot’s path, small circles: the human’s path). (b) Forward linear velocity (a soft E-stop has
occurred at about 5 s). (c) Rotational angular velocity.

a smooth transition from Goto to Avoid and then back to Goto. In this process, the
velocity command was generated in accordance with the algorithm developed in
Section 5.

On the other hand, Fig. 11 shows experimental results of avoiding a moving
human. The small circles in Fig. 11a depict the movement of the human. The human
blocked the robot path at about 5 s and therefore a soft E-stop was ordered at that
moment. As seen in Fig. 11b, the velocity of the robot dropped to zero at that
moment. The E-stop can be tested in two ways: by hitting a bumper (hard E-stop)
or by blocking the LRF sensor (soft E-stop).

With a mobile robot with no fast dynamics, the effectiveness of the proposed
architecture appears in the middle of face/voice recognitions (or other tasks in the
Deliberate Layer in Fig. 3); under the assumption that only one computer is in-
stalled in the robot. As possible expansion of basic actions in the Reflexive Layer,
avoidance of grasping a heavy (over-load) object, detection of a flying object to-



K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420 1417

ward the robot using a vision system, touching a fire and others can be added in the
future.

7. Conclusions

In this paper, a novel control architecture of the reflexive layer for the autonomous
navigation of a mobile platform was proposed. The prime purpose of the proposed
architecture was to allow easy addition and evolution of innovative behaviors in
the sequencing layer in a more systematic way without much concern about how
the modified behaviors would be completed in real-time. This was accomplished
by separating the ordinary intelligent and complicated behaviors from the actions
that required hard-real-time execution. The designed reflexive layer had four com-
ponents: resources, actions, action coordinator and motion controller. Resources
are shared memories for sensor information. Actions are basic software compo-
nents for realizing the movement of the robot. The designed four basic actions were
Goto, Avoid, Move and E-stop. The role of the action coordinator was to fuse the
outputs from activated actions in an effective way and to deliver the fused output to
the motion controller. Among various sensors (sonar, IR, LRF), an avoidance algo-
rithm using the LRF sensor was developed. A moving obstacle was identified as a
moving circle, characterized by a center and a radius. A Kalman filter was designed
to estimate the distance and orientation to the center of the moving obstacle. Ex-
periments were conducted for testing Goto, Move, Avoid and E-stop procedures for
a moving obstacle as well as scattered stand-still obstacles. Through experiments,
it was verified that the proposed architecture of the reflexive layer and the moving
obstacle avoidance algorithm are very effective for navigating in an unknown envi-
ronment. Future work includes fusion techniques of multiple sensors and navigation
schemes in the presence of multiple moving obstacles.

Acknowledgement

This work was supported by the Regional Research Universities Program (Research
Center for Logistics Information, LIT) granted by the Ministery of Education, Sci-
ence and Technology, Korea.

References

1. R. C. Arkin, Behavior-Based Robotics. MIT Press, Cambridge, MA (1998).
2. R. C. Arkin, Motor schema-based mobile robot navigation, Int. J. Robotics Res. 8, 92–112 (1998).
3. R. A. Brooks, A robust layered control system for a mobile robot, IEEE J. Robotics Automat. 2,

14–23 (1986).
4. R. A. Brooks, Behavior-based humanoid robotics, in: Proc. IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems, Osaka, vol. 1, pp. 1–8 (1996).
5. J. H. Connell, SSS: a hybrid architecture applied to robot navigation, in: Proc. IEEE Conf. on

Robotics and Automation, Nice, pp. 2719–2724 (1992).



1418 K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420

6. M. Lindstrom, A. Oreback and H. I. Christensen, BERRA: a research architecture for service
robots, in: Proc. IEEE Conf. on Robotics and Automation, San Francisco, CA, USA, pp. 3278–
3283 (2000).

7. M. Hans and W. Baum, Concept of a hybrid architecture for Care-O-bot, in: Proc. ROMAN-2001,
Bordeaux, pp. 407–411 (2001).

8. J. S. Albus, 4D/RCS: a reference model architecture for intelligent unmanned ground vehicles, in:
Proc. SPIE Annu. Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls, Orlando,
FL, pp. 303–310 (2002).

9. G. H. Kim, W. J. Chung, M. S. Kim and C. W. Lee, Control architecture design and integration
of the autonomous service robot PSR, in: Proc. Int. Conf. on Control, Automation, and Systems,
Muju, pp. 2379–2384 (2002).

10. I. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. Estlin and W. S. Kim, CLARAty: an
architercture for reusable robotic software, in: Proc. SPIE Aerospace Conf., Orlando, FL, pp.
253–264 (2003).

11. A. Orebäck and H. I. Christensen, Evaluation of architecture for mobile robotics, Autonomous
Robots 14, 33–49 (2003).

12. P. Ridao, J. Batlle and M. Carreras, O2CA2; A new object oriented control architecture for auton-
omy: the reactive layer, Control Eng. Practice 10, 857–873 (2002).

13. M. Aicardi, G. Casalino, A. Bicchi and A. Balestrino, Closed loop steering of unicycle-like vehi-
cles via Lyapunov techniques, IEEE Robotics Automat. Mag. 2, 27–35 (1995).

14. T. Taira and N. Yamasaki, Functionally distributed control architecture for antonomous mobile
robots, J. Robotics Mechatron. 16, 217–224 (2004).

15. R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots, MIT Press, Cam-
bridge, MA (2004).

16. K. S. Hong, K. H. Choi, J. G. Kim and S. Lee, A PC-based open robot control system: PC-ORC,
Robotics Comp.-Integr. Manufact. 17, 355–365 (2001).

17. C. S. Kim, K. S. Hong and H. Y.-S. Han, PC-based off-line programming in the shipbuilding
industry: open architecture, Adv. Robotics 19, 435–458 (2005).

18. H.-S. Choi, C. Lee and C. Chun, Development of a new 5 DOF mobile robot arm and its motion
control system, J. Mech. Sci. Technol. 20, 1159–1168 (2006).

19. Ş. Yıldırım and I. Eski, A QP artificial neural network inverse kinematic solution for accurate
robot path control, J. Mech. Sci. Technol. 20, 917–928 (2006).

20. Y. M. Cho, H. S. Kim, I. K. Kim, J. J. Woo and J. Kim, “Fast design of the QP-based optimal
trajectory for a motion simulator,” J. Mech. Sci. Technol. 21, 1973–1985 (2007).

21. B. S. Kim, J.-S. Park, C. Moon, G.-M. Jeong and H.-S. Ahn, A precision robot system with
modular actuators and MEMS micro gripper for micro system assembly, J. Mech. Sci. Technol.
22, 70–76 (2008).

22. L. Dozio and P. Mantegazza, Linux real time application interface (RTAI) in low cost high perfor-
mance motion control, in: Proc. Motion Control 2003 Conf. of ANIPLA, Milan, pp. 27–28 (2003).

23. DIAPM RTAI, http://www.aero.polimi.it/∼rtai/
24. K. Konolidge and K. Myers, The Saphira Architecture for Autonomous Mobile Robots, SRI Inter-

national, Menlo Park, CA (1996).
25. T. Balch, TeamBots, www.teambots.org (2000).
26. G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics, Cambridge University

Press, Cambridge (2000).
27. A. Elfes, Using occupancy grids for mobile robot perception and navigation, IEEE Comp. Arch.

22, 46–57 (1989).



K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420 1419

28. S.-J. Lee, J.-H. Lee and D.-W. Cho, Featured-based map building using sparse sonar data in
a home-like environment, J. Mech. Sci. Technol. 1, 74–82 (2007).

29. M. Aicardi, G. Casalino, A. Bicchi and A. Balestrino, Closed loop steering of unicycle-like vehi-
cles via Lyapunov techniques, IEEE Robotics Automat. Mag. 2, 27–35 (1995).

30. J. Tan and N. Kyriakopoulos, Implementation of a tracking Kalman filter on a digital signal proces-
sor, IEEE Trans. Ind. Electron. 35, 126–134 (1988).

31. J. Borenstein and Y. Koren, Real-time obstacle avoidance for fast mobile robots, IEEE Trans. Syst.
Man Cybernet. 19, 1179–1187 (1989).

32. D. Fox, W. Burgard and S. Thrun, The dynamic window approach to collision avoidance, IEEE
Robot. Automat. Mag. 4, 23–33 (1997).

33. A. Ohya, A. Kosaka and A. Kak, Vision-based navigation by a mobile robot with obstacle avoid-
ance using single camera vision and ultrasonic sensing, IEEE Trans. Robotics Automat. 14, 969–
978 (1998).

34. J. Minguez and L. Montano, Nearness diagram (ND) navigation: Collision avoidance in trouble-
some scenarios, IEEE Trans. Robotics Automat. 20, 45–59 (2004).

About the Authors

Keum-Shik Hong received the BS degree in Mechanical Design and Production
Engineering from Seoul National University, in 1979, the MS degree in Mechan-
ical Engineering from Columbia University, New York, in 1987, and both the MS
degree in Applied Mathematics and the PhD degree in Mechanical Engineering
from the University of Illinois at Urbana-Champaign (UIUC), in 1991. From 1991
to 1992, he was a Postdoctoral Fellow at UIUC. He joined the School of Mechan-
ical Engineering at Pusan National University, South Korea, in 1993; he is now
Professor. During 1982–1985, he was with Daewoo Heavy Industries, Incheon,

South Korea, where he worked on vibration, noise and emission problems of vehicles and engines.
He serves as Editor-in-Chief of the Journal of Mechanical Science and Technology and serves as an
Associate Editor on various IEEE and IFAC conferences editorial boards. He also served as an As-
sociate Editor for the Journal of Control, Automation, and Systems Engineering and for Automatica
(2000–2006), and as an Editor for the International Journal of Control, Automation, and Systems
(2003–2005). His laboratory, the Integrated Dynamics and Control Engineering Laboratory, was des-
ignated a National Research Laboratory by the Ministry of Science and Technology of Korea, in 2003.
He received the Fumio Harashima Mechatronics Award, in 2003, and the Korean Government Pres-
idential Award, in 2007. He is a member of the ASME, IEEE, ICASE, KSME, KSPE, KIEE and
KINPR. His current research interests include nonlinear systems theory, adaptive control, distributed
parameter system control, robotics, vehicle control and innovative control applications to engineering
problems.

Tua Agustinus Tamba received the BS degree in Engineering Physics from the
Institute of Technology Bandung, Indonesia, in 2006. He is currently a Graduate
student at the School of Mechanical Engineering, Pusan National University, Bu-
san, South Korea. His research interests include the control of unmanned vehicles
and path-planning technologies for autonomous robots.



1420 K.-S. Hong et al. / Advanced Robotics 22 (2008) 1397–1420

Jae-Bok Song received the BS and MS degrees in Mechanical Engineering from
Seoul National University, in 1983 and 1985, respectively, and the PhD degree
in Mechanical Engineering from MIT, in 1992. He joined the faculty of the De-
partment of Mechanical Engineering, Korea University, in 1993. Currently, he is
a Director of the Intelligent Robotics Research Center at Korea University. He is
also an Editor for the International Journal of Control, Automation and Systems.
His current research interests include mobile robot navigation, design and control
of safe manipulators, and haptics.


